z-logo
open-access-imgOpen Access
Measurement of heat transfer coefficients in stirred single‐use bioreactors by the decay of hydrogen peroxide
Author(s) -
Müller Matthias,
Meusel Wolfram,
Husemann Ute,
Greller Gerhard,
Kraume Matthias
Publication year - 2017
Publication title -
engineering in life sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.547
H-Index - 57
eISSN - 1618-2863
pISSN - 1618-0240
DOI - 10.1002/elsc.201700099
Subject(s) - bioreactor , hydrogen peroxide , exothermic reaction , continuous stirred tank reactor , chemistry , catalysis , chemical engineering , thermodynamics , materials science , organic chemistry , physics , engineering
Single‐use bioreactors are barely described by means of their heat transfer characteristics, although some of their properties might affect this process. Steady‐state methods that use external heat sources enable precise investigations. One option, commonly present in stirred, stainless steel tanks, is to use adjustable electrical heaters. An alternative are exothermic chemical reactions that offer a higher flexibility and scalability. Here, the catalytic decay of hydrogen peroxide was considered a possible reaction, because of the high reaction enthalpy of –98.2 kJ/mole and its uncritical reaction products. To establish the reaction, a proper catalyst needed to be determined upfront. Three candidates were screened: catalase, iron(III)‐nitrate and manganese(IV)‐oxide. Whilst catalase showed strong inactivation kinetic and general instability and iron(III)‐nitrate solution has a pH of 2, it was decided to use manganese(IV)‐oxide for the bioreactor studies. First, a comparison between electrical and chemical power input in a benchtop glass bioreactor of 3.5 L showed good agreement. Afterwards the method was transferred to a 50 L stirred single‐use bioreactor. The deviation in the final results was acceptable. The heat transfer coefficient for the electrical method was 242 W/m 2 /K, while the value achieved with the chemical differed by less than 5%. Finally, experiments were carried out in a 200 L single‐use bioreactor proving the applicability of the chemical power input at technical relevant scales.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here