z-logo
open-access-imgOpen Access
Carbon concentration and oxygen availability affect lipid and carotenoid production by carob pulp syrup‐grown Rhodosporidium toruloides NCYC 921
Author(s) -
Parreira Teresa Margarida,
Freitas Claudia,
Reis Alberto,
Roseiro José,
Silva Teresa Lopes
Publication year - 2015
Publication title -
engineering in life sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.547
H-Index - 57
eISSN - 1618-2863
pISSN - 1618-0240
DOI - 10.1002/elsc.201500002
Subject(s) - carotenoid , sugar , food science , yeast , chemistry , pulp (tooth) , botany , biology , biochemistry , medicine , pathology
The simultaneous effect of oxygen availability and carbon source concentration on yeast lipid and carotenoid production has never been studied before. In this work, a Doehlert distribution design was used to study the simultaneous effect of carbon concentration and oxygen availability on Rhodosporidium toruloides NCYC 921 carotenoid and lipid production. A cheap industrial byproduct was used as carbon source (carob pulp syrup). A total sugar concentration of 106.3 g/L and a medium volume of 0.120 L induced the highest total carotenoid and total fatty acid productivities (4.60 μg/Lh and 0.029 g/Lh, respectively). Flow cytometry was used to assess yeast stress response under different cultivation conditions. The highest proportion of cells with permeabilised membrane (>20%) was induced when the cultivations were carried out at the highest sugar concentration studied (130.0 g/L) or when the culture reached the minimum final medium pH (4.60). The results showed that the total sugar concentration had a positive influence on the yeast biomass and carotenoid content, while the oxygen availability had little influence on the biomass concentration, but had a slight positive influence on the carotenoid content. Regarding the fatty acids, the two factors had a negative impact on the synthesis of these compounds.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here