
Cell disruption methods for improving lipid extraction efficiency in unicellular microalgae
Author(s) -
Rakesh Suchitra,
Dhar Dolly W.,
Prasanna Radha,
Saxena Anil K.,
Saha Supradip,
Shukla Madhulika,
Sharma Khushbu
Publication year - 2015
Publication title -
engineering in life sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.547
H-Index - 57
eISSN - 1618-2863
pISSN - 1618-0240
DOI - 10.1002/elsc.201400222
Subject(s) - chlorella sorokiniana , botryococcus braunii , food science , oleic acid , extraction (chemistry) , chlorella , botany , biochemistry , chlorella vulgaris , biology , fatty acid , chromatography , chemistry , algae
Identification of cost‐effective cell disruption methods to facilitate lipid extraction from microalgae represents a crucial step in identifying promising biofuel‐producing species. Various cell disruption methods including autoclaving, microwave, osmotic shock, and pasteurization were tested in the microalgae Chlorococcum sp. MCC30, Botryococcus sp. MCC31, Botryococcus sp. MCC32, and Chlorella sorokiniana MIC‐G5. Lipid content (on dry weight basis) from the four cultures on day 7 ranged from 11.15 to 48.33%, and on day 14 from 11.42 to 44.26%. Among the methods tested, enhanced lipid extraction was achieved through osmotic shock (15% NaCl) for Botryococcus sp. MCC32, microwave (6 min) for Botryococcus sp. MCC31, osmotic shock (5% NaCl) for Chlorella sorokiniana MIC‐G5 and microwave (2 min) for Chlorococcum sp. MCC30. The highest palmitate (16:0) contents (25.64% and 34.20%) were recorded with osmotic shock (15% NaCl) treatment for Botryococcus sp. MCC32 and microwave (6 min) for Botryococcus sp. MCC31, respectively. Two strains, along with their respective cell disruption methods, were identified as promising oil blends or nutraceuticals due to their high unsaturated fatty acid (UFA) content: Botryococcus sp. MCC31 (37.6% oleic acid content; 39.37% UFA) after autoclaving and Botryococcus sp. MCC32 after osmotic shock of 15% NaCl treatment (19.95% oleic acid content; 38.17% UFA).