z-logo
open-access-imgOpen Access
Quantification of Survival of Escherichia coli O157:H7 on Plants Affected by Contaminated Irrigation Water
Author(s) -
Ibekwe A. M.,
Shouse P. J.,
Grieve C. M.
Publication year - 2006
Publication title -
engineering in life sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.547
H-Index - 57
eISSN - 1618-2863
pISSN - 1618-0240
DOI - 10.1002/elsc.200620157
Subject(s) - rhizosphere , phyllosphere , biology , soil water , escherichia coli , contamination , microbiology and biotechnology , pathogen , soil microbiology , bacteria , botany , veterinary medicine , ecology , gene , biochemistry , genetics , medicine
Enterohemorrhagic E. coli O157: H7 (EHEC) is a major foodborne pathogen capable of causing diarrhea and vomiting, with further complications such as hemolytic‐uremic syndrome (HUS). The aim of this study was to use the real‐time PCR method to quantify the survival of Escherichia coli O157:H7/pGFP in phyllosphere (leaf surface), rhizosphere (volume of soil tightly held by plant roots), and non‐rhizosphere soils (sand and clay) irrigated with contaminated water and compare the results obtained between real‐time PCR method and conventional plate counts. The real‐time PCR probe was designed to hybridize with the ( eae ) gene of E. coli O157:H7. The probe was incorporated into real‐time PCR containing DNA extracted from the phyllosphere, rhizosphere, and non‐rhizosphere soils irrigated with water artificially contaminated with E. coli O157:H7. The detection limit for E. coli O157:H7 quantification by real‐time PCR was 2.3 × 10 3 in the rhizosphere and phyllosphere samples. E. coli O157:H7 survived longer in rhizosphere soil than the non‐rhizosphere soil. The concentration of E. coli O157:H7/pGFP in rhizosphere soils was ≥ 10 4 CFU/g in both soils at day 12 based on both plate count and real time PCR, with the clay soil significantly ( P = 0.05) higher than the sandy soil. This data showed that E. coli O157H:7 can persist in the environment for more than 50 d, and this may pose some risk for both animal and human infection and provides a very significant pathway for pathogen recontamination in the environment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here