
Growth Tolerance of Rhizobia Isolated from Sand Dune Legumes of the Southwest Coast of India
Author(s) -
Arun A. B.,
Sridhar K. R.
Publication year - 2005
Publication title -
engineering in life sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.547
H-Index - 57
eISSN - 1618-2863
pISSN - 1618-0240
DOI - 10.1002/elsc.200420061
Subject(s) - rhizobia , salinity , bioremediation , extreme environment , biology , soil salinity , microorganism , soil water , agronomy , botany , ecology , symbiosis , bacteria , contamination , genetics
This paper describes the properties of rhizobia from extreme soil environments which are characterized by high temperatures, salt concentrations and also rather extreme pH values due to the contamination by spray water from the sea. Coastal sand dunes are such extreme habitats which support a variety of microorganisms. To explore stress‐tolerant rhizobia, ten rhizobial strains were isolated from five wild legumes from two dune systems of the southwest coast of India. They were tested for growth performance or tolerance at a wide range of temperatures (30–55 °C), salinity (0.1–4.5 % w/v) and initial pH values (3.5–11). Growth of five isolates was highest between 30–40 °C, while four isolates showed considerable growth up to 2.5 % salinity (at 35 °C). All isolates demonstrated elevated growth at an initial pH of between 5–6 (at 35 °C and 2 % salinity), while five isolates had additional growth peaks at an initial pH of between pH 7.5–9 indicating alkaline tolerance and were suitable for efficient phosphate solubilization. The stress tolerance traits of these rhizobia are of potential value for strain improvement in agriculture or the bioremediation of soils at elevated temperatures, salinity and extreme pH values, and thus are of high biotechnological importance.