
Cost Comparison of Protein Capture from Cultivation Broths by Expanded and Packed Bed Adsorption
Author(s) -
Curbelo D.R.,
Garke G.,
Guilarte R.C.,
Anspach F.B.,
Deckwer W.D.
Publication year - 2003
Publication title -
engineering in life sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.547
H-Index - 57
eISSN - 1618-2863
pISSN - 1618-0240
DOI - 10.1002/elsc.200301797
Subject(s) - adsorption , packed bed , downstream processing , centrifugation , chromatography , filtration (mathematics) , chemistry , expanded bed adsorption , mass transfer , chemical engineering , process engineering , engineering , mathematics , organic chemistry , statistics
In the downstream processing of recombinant protein production, the reduction of unit operations required for product capture and purification, is of the utmost priority due to its cost diminishing effect. In this regard, target protein capture from cell suspensions in a fluidized bed of affinity particles with different sizes (expanded bed adsorption (EBA) with classified particles), presents an efficient tool since EBA may substitute cell disintegration, separation by centrifugation or filtration, and packed bed adsorption. However, as illustrated by experiments with the BSA/yeast cells system, the entire broth processing used in EBA also has detrimental influences due to the cell (or cell debris) binding on the affinity carrier. In particular, external mass transfer may become more dominant, and the lifetime of the affinity particles may reduce as a result of other cleaning procedures. Using simulations performed with a commercial software package, the cost superiority of alternate process routes (EBA or packed bed adsorption with preceding steps) can be evaluated. This elucidates the favorable application range for each route.