
A binder‐free composite of graphite and kaolinite as a stable working electrode for general electrochemical applications
Author(s) -
Karunadasa Kohobhange S. P.,
Rathnayake Dananjali,
Manoratne Chinthan,
Pitawala Amarasooriya,
Rajapakse Gamini
Publication year - 2021
Publication title -
electrochemical science advances
Language(s) - English
Resource type - Journals
ISSN - 2698-5977
DOI - 10.1002/elsa.202100003
Subject(s) - electrode , materials science , graphite , composite number , electrochemistry , composite material , working electrode , polyaniline , chemical engineering , polymer , chemistry , polymerization , engineering
Composite electrodes are essential to overcome dynamic challenges related to electrodes made of polymeric binders. Herein, this work reports a composite electrode consisting of graphite and kaolinite (GKCE) as a potential alternative for commercial electrodes. The GKCE series exhibits exponential decay in resistivity parallel to the linear increase in mechanical strength depending on the relative strength of the unique lamella‐like graphite structure when going from low to high graphite percentage. GKCE with 80% graphite employed as the model working electrode for analyte detection and electropolymerization. GKCE can produce a typical voltammogram response with a narrow potential range and highest sensitivity (1.2 A m/mol) towards the analyte (Fe 2+ /Fe 3+ ) compared to commercial working electrodes. Electropolymerization with GKCE leads to a polyaniline network consisting of nanofibers with the lowest charge transfer resistance of 403 Ω. GKCE is a potential low‐cost electrode for general electrochemical applications in comparison with expensive commercial working electrodes.