z-logo
Premium
On the use of correction factors for the mathematical modeling of insulator based dielectrophoretic devices
Author(s) -
Hill Nicole,
LapizcoEncinas Blanca H.
Publication year - 2019
Publication title -
electrophoresis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.666
H-Index - 158
eISSN - 1522-2683
pISSN - 0173-0835
DOI - 10.1002/elps.201900177
Subject(s) - computer science , microscale chemistry , component (thermodynamics) , electrokinetic phenomena , dielectrophoresis , microfluidics , systems engineering , nanotechnology , engineering , physics , materials science , mathematics education , mathematics , thermodynamics
Mathematical modeling is a fundamental component in the development of new microfluidics techniques and devices. Modeling allows for the rapid testing of new system configurations while saving resources. Microscale electrokinetic (EK) techniques have significantly benefited by the advances in modeling programs and software packages. However, EK phenomena are complex to model, as they dynamically affect system characteristics, including the physical properties of the particles and fluid within the system. Insulator‐based dielectrophoresis (iDEP) is an EK technique that has received important attention during the last two decades. In particular, numerous research groups that study iDEP systems employ a combination of modeling and experimentation for developing new iDEP systems. An important fraction of these research groups has adopted the practice of employing “correction factors” to account for EK phenomena that cannot be accurately predicted in their models due to model complexity and limitations in computing resources. The present review article aims to provide the reader with an overview of the most common approaches in the use of correction factors for the modeling of iDEP systems.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here