Premium
Gel electrophoresis in combination with laser ablation–inductively coupled plasma mass spectrometry to quantify the interaction of cisplatin with human serum albumin
Author(s) -
Sullivan Matthew P.,
Morrow Stuart J.,
Goldstone David C.,
Hartinger Christian G.
Publication year - 2019
Publication title -
electrophoresis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.666
H-Index - 158
eISSN - 1522-2683
pISSN - 0173-0835
DOI - 10.1002/elps.201900070
Subject(s) - cisplatin , chemistry , human serum albumin , chromatography , mass spectrometry , inductively coupled plasma mass spectrometry , albumin , serum albumin , biochemistry , medicine , surgery , chemotherapy
Cisplatin and its second and third generation analogues are widely used in the treatment of cancer. To study their reactions with proteins, we present a method based on SDS‐PAGE separation and laser ablation–inductively coupled plasma‐mass spectrometry (LA–ICP‐MS) for platinum detection in the reaction between human serum albumin (HSA) and cisplatin. We developed matrix‐matched standards of HSA/cisplatin mixtures and used them to quantify the amount of adducts formed at different HSA:cisplatin ratios. We noted that cisplatin incubation with HSA resulted in the formation of higher order HSA n ‐mers, depending on the amount of cisplatin added. This caused a depletion of the HSA dimer bands, while the majority of HSA was present as the monomer. Inducing the formation of such higher molecular weight species may have an impact on the mode of action of metallodrugs.