Premium
Heart‐cut nano‐LC–CZE–MS for the characterization of proteins on the intact level
Author(s) -
Jooß Kevin,
Scholz Nico,
Meixner Jens,
Neusüß Christian
Publication year - 2019
Publication title -
electrophoresis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.666
H-Index - 158
eISSN - 1522-2683
pISSN - 0173-0835
DOI - 10.1002/elps.201800411
Subject(s) - chromatography , chemistry , ribonuclease , nano , analytical chemistry (journal) , materials science , rna , biochemistry , gene , composite material
Multidimensional separation techniques play an increasingly important role in separation science, especially for the analysis of complex samples such as proteins. The combination of reversed‐phase liquid chromatography in the nanoscale and CZE is especially beneficial due to their nearly orthogonal separation mechanism and well‐suited geometries/dimensions. Here, a heart‐cut nano‐LC–CZE–MS setup was developed utilizing for the first time a mechanical 4‐port valve as LC–CE interface. A model protein mixture containing four different protein species was first separated by nano LC followed by a heart‐cut transfer of individual LC peaks and subsequent CZE–MS analysis. In the CZE dimension, various glycoforms of one protein species were separated. Improved separation capabilities were achieved compared to the 1D methods, which was exemplarily shown for ribonuclease B and its different glycosylated forms. LODs in the lower μg/mL range were determined, which are considerably lower compared to traditional CZE–MS. In addition, this study represents the first application of an LC–CE–MS system for intact protein analysis. The nano‐LC–CZE–MS system is expected to be applicable to various other analytical challenges.