z-logo
Premium
Development of a sheathless CE‐ESI‐MS interface
Author(s) -
Hirayama Akiyoshi,
Abe Hiroshi,
Yamaguchi Nozomi,
Tabata Sho,
Tomita Masaru,
Soga Tomoyoshi
Publication year - 2018
Publication title -
electrophoresis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.666
H-Index - 158
eISSN - 1522-2683
pISSN - 0173-0835
DOI - 10.1002/elps.201800017
Subject(s) - chromatography , cationic polymerization , capillary action , chemistry , analytical chemistry (journal) , analyte , materials science , composite material , polymer chemistry
A sheath‐flow interface is the most common ionization technique in CE‐ESI‐MS. However, this interface dilutes the analytes with the sheath liquid and decreases the sensitivity. In this study, we developed a sheathless CE‐MS interface to improve sensitivity. The interface was fabricated by making a small crack approximately 2 cm from the end of a capillary column fixed on a plastic plate, and then covering the crack with a dialysis membrane to prevent metabolite loss during separation. A voltage for CE separation was applied between the capillary inlet and the buffer reservoir. Under optimum conditions, 52 cationic metabolite standards were separated and selectively detected using MS. With a pressure injection of 5 kPa for 15 s (ca. 1.4 nL), the detection limits for the tested compounds were between 0.06 and 1.7 μmol/L (S/N = 3). The method was applied to analysis of cationic metabolites extracted from a small number (12 000) of cancer cells, and the number of peaks detected was about 2.5 times higher than when using conventional sheath‐flow CE‐MS. Because the interface is easy to construct, it is cost‐effective and can be adapted to any commercially available capillaries. This method is a powerful new tool for highly sensitive CE‐MS‐based metabolomic analysis.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here