Premium
Electrochromatographic performance of graphene and graphene oxide modified silica particles packed capillary columns
Author(s) -
Zhao Hongyan,
Wang Yizhou,
Zhang Danyu,
Cheng Heyong,
Wang Yuanchao
Publication year - 2018
Publication title -
electrophoresis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.666
H-Index - 158
eISSN - 1522-2683
pISSN - 0173-0835
DOI - 10.1002/elps.201700435
Subject(s) - graphene , capillary electrochromatography , packed bed , oxide , chemical engineering , naphthalene , tetraethyl orthosilicate , chemistry , particle size , materials science , chromatography , organic chemistry , capillary electrophoresis , engineering
Graphene oxide functionalized silica microspheres (GO@SiO 2 ) were synthesized based on condensation reaction between amino from aminosilica particles and carboxyl groups from GO. Reduction of GO@SiO 2 with hydrazinium hydroxide generated graphene modified silica particles (G@SiO 2 ). GO@SiO 2 and G@SiO 2 packed capillary columns for capillary electrochromatography were thereafter fabricated by pressure slurry packing with single‐particle frits. GO of 0.3 mg/mL in dispersion solution for GO@SiO 2 synthesis was considered as a compromise between retaining and column efficiency whereas GO@SiO 2 of 20 mg/mL in slurries for column packing was chosen for a homogenous and tight bed. Optimum mobile phases were acquired considering both electroosmotic flow and resolution at an applied voltage of −6 kV as the following: acetonitrile/phosphate buffer (10 mM, pH 7.0), 75:25 (v/v) for polycyclic aromatic hydrocarbons and 50:50 (v/v) for aromatic compounds. A comparison was made between electrochromatographic performances for three PAHs (naphthalene, fluorene and phenanthrene) and three aromatic compounds of various polarities (toluene, aniline and phenol) on bare aminosilica, GO@SiO 2 and G@SiO 2 packed columns, which proved the contribution of alone or combinational actions of solvophobic effect and π‐π electron stacking as well as hydrogen bonds to retaining behaviors by GO@SiO 2 and G@SiO 2 . Well over‐run, over‐day and over‐column precisions (retention time: 0.3–1.4, 1.1–3.8 and 2.8–5.2%, respectively; peak area: 2.6–6.5, 4.8–8.3 and 6.5–12.6%, respectively) of GO@SiO 2 packed columns were a powerful proof for good reproducibility. Analytical characteristics of GO@SiO 2 packed capillary columns in CEC analysis of fresh water were evaluated with respect to linearity ( R 2 = 0.9961–0.9989) over the range 0.1 to 100 mg/L and detection limits of 9.5 for naphthalene, 12.6 for fluorene and 16.2 μg/L for phenanthrene. Further application to fresh water increased the visibility of the proposed material, where good spike recoveries in the range 89–96% were offered.