Premium
The synthesis of weak acidic type hybrid monolith via thiol‐ene click chemistry and its application in hydrophilic interaction chromatography
Author(s) -
Zeng Jiao,
Liu Shengquan,
Wang Menglin,
Yao Shouzhuo,
Chen Yingzhuang
Publication year - 2017
Publication title -
electrophoresis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.666
H-Index - 158
eISSN - 1522-2683
pISSN - 0173-0835
DOI - 10.1002/elps.201600526
Subject(s) - monolith , monolithic hplc column , chemistry , polymerization , adsorption , itaconic acid , fourier transform infrared spectroscopy , desorption , chromatography , chemical engineering , polymer , polymer chemistry , organic chemistry , monomer , high performance liquid chromatography , catalysis , engineering
In this work, a porous structure and good permeability monolithic column was polymerized in UV transparent fused‐silica capillaries via photo‐initiated thiol‐ene click polymerization of 2,4,6,8‐tetravinyl‐2,4,6,8‐tetramethylcyclotetrasiloxane (TMTVS), pentaerythritol tetra(3‐mercaptopropionate)(PETMP), itaconic acid, respectively, in the presence of porogenic solvents (tetrahydrofuranand methanol) and an initiator (2,2‐dimethoxy‐2‐phenylacetophenone) (DMPA) within 30 min. The physical properties of this monolith were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT‐IR) spectroscopy and nitrogen adsorption/desorption measurements. For an overall evaluation of the monolith in chromatographic application, separations of polycyclic aromatic hydrocarbons (PAHs), phenols, amides and bases were carried out. The column efficiency of this monolith could be as high as 112 560 N/m. It also possesses a potential application in fabrication of monoliths with high efficiency for c‐LC. In addition, the resulting monolithic column demonstrated the potential use in analysis of environment waters.