z-logo
Premium
Analysis of monoclonal antibody by a novel CE‐UV/MALDI‐MS interface
Author(s) -
Biacchi Michael,
Bhajun Ricky,
Saïd Nassur,
Beck Alain,
François Yannis Nicolas,
LeizeWagner Emmanuelle
Publication year - 2014
Publication title -
electrophoresis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.666
H-Index - 158
eISSN - 1522-2683
pISSN - 0173-0835
DOI - 10.1002/elps.201400276
Subject(s) - chemistry , chromatography , peptide , mass spectrometry , electropherogram , computational biology , analytical chemistry (journal) , electrophoresis , biochemistry , biology
mAbs are highly complex proteins that present a wide range of microheterogeneity that requires multiple analytical methods for full structure assessment and quality control. As a consequence, the characterization of mAbs on different levels is particularly product‐ and time‐consuming. CE‐MS couplings, especially to MALDI, appear really attractive methods for the characterization of biological samples. In this work, we report the last instrumental development and performance of the first totally automated off‐line CE‐UV/MALDI‐MS/MS. This interface is based on the removal of the original UV cell of the CE apparatus, modification of the spotting device geometry, and creation of an integrated delivery matrix system. The performance of the method was evaluated with separation of five intact proteins and a tryptic digest mixture of nine proteins. Intact protein application shows the acquisition of electropherograms with high resolution and high repeatability. In the peptide mapping approach, a total number of 154 unique identified peptides were characterized using MS/MS spectra corresponding to average sequence coverage of 64.1%. Comparison with NanoLC/MALDI‐MS/MS showed complementarity at the peptide level with an increase of 42% when using CE/MALDI‐MS coupling. Finally, this work represents the first analysis of intact mAb charge variants by CZE using an MS detection. Moreover, using a peptide mapping approach CE‐UV/MALDI‐MS/MS fragmentation allowed 100% sequence coverage of the light chain and 92% of the heavy chain, and the separation of four major glycosylated peptides and their structural characterization.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here