Premium
MALDI analysis of proteins after extraction from dissolvable ethylene glycol diacrylate cross‐linked polyacrylamide gels
Author(s) -
Papasotiriou Dimitrios G.,
Markoutsa Stavroula,
Gorka Jan,
Schleiff Enrico,
Karas Michael,
Meyer Bjoern
Publication year - 2013
Publication title -
electrophoresis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.666
H-Index - 158
eISSN - 1522-2683
pISSN - 0173-0835
DOI - 10.1002/elps.201300132
Subject(s) - chromatography , ethylene glycol , polyacrylamide , extraction (chemistry) , chemistry , polyacrylamide gel electrophoresis , protein purification , methanol , biochemistry , polymer chemistry , organic chemistry , enzyme
Although the extraction of intact proteins from polyacrylamide gels followed by mass spectrometric molecular mass determination has been shown to be efficient, there is room for alternative approaches. Our study evaluates ethylene glycol diacrylate, a cleavable cross‐linking agent used for a new type of dissolvable gels. It attains an ester linkage that can be hydrolyzed in alkali conditions. The separation performance of the new gel system was tested by 1D and 2D SDS‐PAGE using the outer chloroplast envelope of Pisum sativum as well as a soluble protein fraction of human lymphocytes, respectively. Gel spot staining (CBB), dissolving, and extracting were conducted using a custom‐developed workflow. It includes protein extraction with an ammonia–SDS buffer followed by methanol treatment to remove acrylamide filaments. Necessary purification for MALDI‐TOF analysis was implemented using methanol–chloroform precipitation and perfusion HPLC. Both cleaning procedures were applied to several standard proteins of different molecular weight as well as ‘real’ biological samples (8–75 kDa). The protein amounts, which had to be loaded on the gel to detect a peak in MALDI‐TOF MS, were in the range of 0.1 to 5 μg, and the required amount increased with increasing mass.