Premium
Reorientation of microfluidic channel enables versatile dielectrophoretic platforms for cell manipulations
Author(s) -
Tang ShiYang,
Zhang Wei,
Yi Pyshar,
Baratchi Sara,
Kalantarzadeh Kourosh,
Khoshmanesh Khashayar
Publication year - 2013
Publication title -
electrophoresis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.666
H-Index - 158
eISSN - 1522-2683
pISSN - 0173-0835
DOI - 10.1002/elps.201200659
Subject(s) - microelectrode , microfluidics , dielectrophoresis , nanotechnology , materials science , channel (broadcasting) , sorting , electrode , computer science , chemistry , telecommunications , programming language
Dielectrophoresis is a versatile tool for the sorting, immobilization, and characterization of cells in microfluidic systems. The performance of dielectrophoretic systems strongly relies on the configuration of microelectrodes, which produce a nonuniform electric field. However, once fabricated, the microelectrodes cannot be reconfigured to change the characteristics of the system. Here, we show that the reorientation of the microfluidic channel with respect to the microelectrodes can be readily utilized to alter the characteristics of the system. This enables us to change the location and density of immobilized viable cells across the channel, release viable cells along customized numbers of streams within the channel, change the deflection pattern of nonviable cells along the channel, and improve the sorting of viable and nonviable cells in terms of flow throughput and efficiency of the system. We demonstrate that the reorientation of the microfluidic channel is an effective tool to create versatile dielectrophoretic platforms using the same microelectrode design.