Premium
Fiber‐free coupling between bulk laser beams and on‐chip polymer‐based multimode waveguides
Author(s) -
Jensen Thomas G.,
Nielsen Lars B.,
Kutter Jörg P.
Publication year - 2011
Publication title -
electrophoresis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.666
H-Index - 158
eISSN - 1522-2683
pISSN - 0173-0835
DOI - 10.1002/elps.201000593
Subject(s) - polydimethylsiloxane , materials science , chip , multi mode optical fiber , lab on a chip , microfluidics , optical power , optical fiber , optics , coupling (piping) , optoelectronics , laser , beam (structure) , polystyrene , photonics , polymer , nanotechnology , physics , computer science , telecommunications , metallurgy , composite material
In this paper, we demonstrate the design of a virtually alignment‐free optical setup for use with microfluidic applications involving a layered glass/SU‐8/PDMS (polydimethylsiloxane) chip. We show how inexpensive external lenses combined with carefully designed on‐chip lenses can be used to couple light from a bulk beam to on‐chip waveguides and back into a bulk beam again. Using this setup, as much as 20% of the light coming from the source can be retrieved after passing through the on‐chip waveguides. The proposed setup is based on a pin‐aided alignment system that makes it possible to change chips in the optical train in only a few seconds with a standard deviation of about 2% in the transmitted power. Furthermore, we demonstrate how these optical setups can be combined with microfluidics to create an on‐chip flow cytometer enabling detection and counting of polystyrene particles down to 1 μm at a rate of 100 Hz.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom