z-logo
Premium
A Self‐contained Two‐electrode Nanosensor for Electrochemical Analysis in Aqueous Microenvironments
Author(s) -
Scheibel Olivia V.,
Schrlau Michael G.
Publication year - 2020
Publication title -
electroanalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.574
H-Index - 128
eISSN - 1521-4109
pISSN - 1040-0397
DOI - 10.1002/elan.201900672
Subject(s) - nanosensor , electrode , nanoprobe , reference electrode , working electrode , materials science , electrochemistry , nanotechnology , redox , analyte , standard hydrogen electrode , palladium hydrogen electrode , electrochemical gas sensor , nanoparticle , chemistry , chromatography , metallurgy
We describe the development, fabrication, and characterization of a novel two‐electrode nanosensor contained within the tip of a needle‐like probe. This sensor consists of two, vertically aligned, carbon structures which function as individual electrodes. One of the carbon structures was modified by silver electrodeposition and chlorination to enable it to function as a pseudo‐reference electrode. Performance of this pseudo‐reference electrode was found to be comparable to that of commercially available Ag/AgCl reference electrodes. The unmodified carbon structure was employed as a working electrode versus the silver‐plated carbon structure to form a two‐electrode sensor capable of characterizing redox‐active analytes. The nanosensor was demonstrated to be capable of electrochemically characterizing the redox behavior of para ‐aminophenol (PAP) in both bulk solutions and microenvironments. PAP was also measured in cell lysate to show that the nanosensor can detect small concentrations of analyte in heterogenous environments. As the working and reference electrodes are contained within a single nanoprobe, there was no requirement to position external electrodes within the electrochemical cell enabling analysis within very small domains. Due to the low‐cost manufacturing process, this nanoprobe has the potential to become a unique and widely accessible tool for the electrochemical characterization of microenvironments.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here