Premium
A New Approach for Voltammetric Determination of Nefopam and its Metabolite
Author(s) -
Dubenska Liliya,
Dushna Olha,
Pysarevska Solomiya,
Blazheyevskiy Mykola
Publication year - 2020
Publication title -
electroanalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.574
H-Index - 128
eISSN - 1521-4109
pISSN - 1040-0397
DOI - 10.1002/elan.201900595
Subject(s) - chemistry , oxide , metabolite , reagent , electrolyte , detection limit , electrode , supporting electrolyte , chromatography , nuclear chemistry , organic chemistry , biochemistry
In present paper we described a new simple voltammetric method of determination of nefopam alkaloid and its metabolite – N‐oxide. N‐oxide of nefopam is reduced at the dropping mercury electrode (DME) and silver solid amalgam electrodes (AgSAE), which can effectively replace mercury and chemically modified electrodes. The reduction consists of two one‐electron stages each accompanied with one proton transfer. N‐oxide of nefopam can be obtained from nefopam substance by oxidation with potassium peroxymonosulfate. It was studied the effect of various factors on N‐oxide quantitative yield (pH, oxidation duration, reagents concentration) as well as on the reduction of N‐oxide at DME and p‐AgSAE (pH, the nature of background electrolyte, potential and time of accumulation). It was showed that the reduction current linearly increased with increasing of concentration of analgesic. Limit of quantiation is 10 −6 mol L −1 at DME and 10 −7 mol L −1 at p‐AgSAE. The developed method was applied for the analysis of commercial drug solution for injection “Nefopam” with recovery of 96.7 %, as well as for the spiked human urine samples. Excellent repeatability with a relative standard deviation below 5 % was achieved.