Premium
Imidazolium Based Surface Active Ionic Liquids as Novel Micellar Media for Simultaneous and Sensitive Electrochemical Detection of Dopamine and Ascorbic Acid
Author(s) -
Rather Mudasir Ahmad,
Bhat Sajad Ahmad,
Pandit Sarwar Ahmad,
Rather Ghulam Mohammad,
Khan Khaliquz Zaman,
Bhat Mohsin Ahmad
Publication year - 2017
Publication title -
electroanalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.574
H-Index - 128
eISSN - 1521-4109
pISSN - 1040-0397
DOI - 10.1002/elan.201700047
Subject(s) - ascorbic acid , micelle , chemistry , electrochemistry , ionic liquid , chloride , redox , hydroquinone , detection limit , inorganic chemistry , chromatography , electrode , organic chemistry , catalysis , aqueous solution , food science
Surface active ionic liquid (SAIL) micelle assisted, simultaneous and highly sensitive electrochemical sensing of dopamine (DA) and ascorbic acid (AA) is presented. Results presented herein establish that SAILs viz.1‐dodecyl‐3‐methyl imidazolium chloride ([DDMIM][Cl]), 1‐octyl‐3‐methyl imidazolium chloride ([OMIM][Cl]) and 1‐butyl‐3‐methyl imidazolium chloride ([BMIM][Cl]) exhibit a probe and SAIL nature/concentration specific impact on the redox behaviour of hydroquinone (H 2 Q), dopamine (DA) and ascorbic acid (AA). To our observations, the electrochemical behaviour of DA and AA is affected oppositely by SAILs with the apparent effects being more appreciable in presence of [DDMIM][Cl]. In the presence of [DDMIM][Cl] micelles, the electro‐oxidation of AA was observed to occur at potentials about 350 mV less positive than required for electrooxidation of DA, an important advantage that minimises the interference of former in sensing of the later. The peak to peak potential separation of 350 mV observed in presence of [DDMIM][Cl] micelles is the largest to be reported so far. The DPV signal for DA and AA displayed a linear response in the concentration range of 6.6 to 99.9 μM and 6.6 to 131.5 μM respectively. Very low detection limits of 0.0161 μM for DA in presence of 39.8 μM AA and 0.0227 μM for AA in presence of 39.8 μM DA were estimated in micellar phase of [DDMIM][Cl].