Premium
Mechanism of Chicoric Acid Electrochemical Oxidation and Identification of Oxidation Products by Liquid Chromatography and Mass Spectrometry
Author(s) -
Newair Emad F.,
AbdelHamid Refat,
Kilmartin Paul A.
Publication year - 2017
Publication title -
electroanalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.574
H-Index - 128
eISSN - 1521-4109
pISSN - 1040-0397
DOI - 10.1002/elan.201600596
Subject(s) - chemistry , cyclic voltammetry , chronoamperometry , glutathione , electrochemistry , mass spectrometry , glassy carbon , chromatography , high performance liquid chromatography , organic chemistry , electrode , enzyme
Electrochemical oxidation of chicoric acid (ChA) was investigated using cyclic voltammetry and chronoamperometry at a glassy carbon electrode. Chicoric acid generates single quasi‐reversible redox wave in cyclic voltammetry over a wide pH range, and an ECEC‐dimerization mechanism is proposed. Effect of glutathione (GSH) on the electrochemical oxidation of chicoric acid (ChA) was investigated in Britton−Robinson buffer solution. Ultra‐high performance liquid chromatography (UPLC) coupled with mass spectrometry (MS) was used to show that the naturally occurring chicoric acid (ChA) underwent an electrochemical oxidation in the presence of glutathione (GSH) to form mono‐, bi‐, tri‐, and four‐glutathione conjugates of chicoric acid and a mono‐glutathione conjugate of a chicoric acid dimer. The obtained results are useful for understanding and predicting the oxidative degradation pathway of chicoric acid.