Premium
Recent Advances of Carbon Nanotubes‐based Electrochemical Immunosensors for the Detection of Protein Cancer Biomarkers
Author(s) -
Feng Taotao,
Wang Yue,
Qiao Xiuwen
Publication year - 2017
Publication title -
electroanalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.574
H-Index - 128
eISSN - 1521-4109
pISSN - 1040-0397
DOI - 10.1002/elan.201600512
Subject(s) - nanotechnology , carbon nanotube , materials science , nanomaterials , electrochemistry , biosensor , cancer detection , immunoassay , electrode , cancer , chemistry , medicine , antibody , immunology
An efficient electrochemical immunosensor can offer the potential for the detection of protein cancer biomarkers due to its high sensitivity, low cost and possible integration in compact analytical devices. In the last several years, researchers have developed various electrochemical immunoassay methods for the detection of protein cancer biomarkers. Significant progresses have been made in the study of electrochemical immunosensor that based on CNTs, especially in the fields of clinical screening and diagnosis of cancer field. This is because CNTs possess unique structural, mechanical and electronic properties that can decrease over‐potential and improve the sensitivity of electrochemical immunosensor. This paper reviews recent advances in the different modified strategies of constructing electrochemical immunosensor based on CNTs for detecting protein cancer biomarkers. CNTs or CNTs hybrid nanomaterials modified electrodes have been firstly introduced as the sensing platforms for the detection of protein cancer biomarkers. On the other hand, CNTs or functional CNTs used as labels in sandwich‐type electrochemical immunosensors have been systematically summarized. These novel strategies and the general principles could increase the sensitivity of the immunosensor, thereby overcoming the limitations of its application in the biosensing field.