Premium
Nanostructured Conducting Polymer/Copper Oxide as a Modifier for Fabrication of L‐DOPA and Uric Acid Electrochemical Sensor
Author(s) -
SheikhMohseni Mohammad Ali,
Pirsa Sajad
Publication year - 2016
Publication title -
electroanalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.574
H-Index - 128
eISSN - 1521-4109
pISSN - 1040-0397
DOI - 10.1002/elan.201600089
Subject(s) - electrode , materials science , differential pulse voltammetry , electrochemical gas sensor , electrochemistry , carbon paste electrode , cyclic voltammetry , copper oxide , conductive polymer , copper , inorganic chemistry , nuclear chemistry , polymer , chemistry , composite material , metallurgy
A modified electrode was prepared by modification of the carbon paste electrode (CPE) with a nanostructured material. This nanostructure with electrocatalytic activity was synthesized by combination of poly pyrrole and copper oxide nanoparticles (PPy/CuO). The structure and morphology of PPy/CuO was studied. The fabricated modified electrode (CPE‐PPy/CuO) exhibited an excellent electrocatalytic activity toward levodopa (L‐DOPA) and uric acid (UA) oxidation because of high conductivity, low electron transfer resistance and catalytic effect. The CPE‐PPy/CuO had a lower overvoltage and enhanced electrical current with respect to the bare CPE for both L‐DOPA and UA. Also, the modified electrode showed a good resolution for the overlapped anodic peaks of L‐DOPA and UA. This electrode was used for the successful simultaneous determination of L‐DOPA and UA. The electrochemical sensor responded to L‐DOPA and UA in the concentration range of 0.050–1200 μM and 0.040–2000 μM, respectively. The detection limits were obtained by differential pulse voltammetry as 15 nM for L‐DOPA and 20 nM for UA. Finally, the proposed electrode was used for determination of L‐DOPA and UA in real samples using standard addition method.