Premium
Electrochemical and Photoelectrochemical Sensing of NADH and Ethanol Based on Immobilization of Electrogenerated Chlorpromazine Sulfoxide onto Graphene‐CdS Quantum Dot/Ionic Liquid Nanocomposite
Author(s) -
Jafari Fereydoon,
Salimi Abdollah,
Navaee Aso
Publication year - 2014
Publication title -
electroanalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.574
H-Index - 128
eISSN - 1521-4109
pISSN - 1040-0397
DOI - 10.1002/elan.201300508
Subject(s) - graphene , overpotential , electrochemistry , nanocomposite , ionic liquid , chemistry , redox , inorganic chemistry , glassy carbon , electrocatalyst , quantum dot , electrode , materials science , nanotechnology , organic chemistry , catalysis , cyclic voltammetry
Here, a simple one‐step solvothermal procedure was employed to synthesize a nanocomposite containing graphene‐nanosheets and CdS quantum dots (GNs‐CdS QDs). The electrochemical oxidation of chlorpromazine (CPZ) to chlorpromazine‐sulfoxide (CPZ‐SO) onto a GNs‐CdS QDs/ionic liquid (IL) nanocomposite modified glassy carbon (GC) electrode give rise to redox‐active products which showed excellent electrocatalytic and photoelectrocatalytic activity toward NADH oxidation at reduced overpotential. A linear response up to 200 µM was obtained for photoamperometric determination of NADH with detection limit 1 µM. Immobilizing alcohol dehydrogenase(ADH) onto the modified electrode via a simple cross linking procedure, the photoelectrochemical capability of the proposed system toward ethanol biosensing was clearly shown.