Premium
NADH Oxidation Catalyzed by Electropolymerized Azines on Carbon Nanotube Modified Electrodes
Author(s) -
Li Hanzi,
Wen Hao,
Calabrese Barton Scott
Publication year - 2012
Publication title -
electroanalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.574
H-Index - 128
eISSN - 1521-4109
pISSN - 1040-0397
DOI - 10.1002/elan.201100573
Subject(s) - electrocatalyst , azine , carbon nanotube , cyclic voltammetry , biosensor , electrochemistry , catalysis , methylene blue , electrode , chemistry , inorganic chemistry , materials science , chemical engineering , nuclear chemistry , nanotechnology , organic chemistry , photocatalysis , engineering
Electropolymerizing azines on a carbon nanotube (CNT) modified electrode yields a high‐surface area interface with excellent electrocatalytic activity towards NADH oxidation. Electrodeposition of poly(methylene green) (PMG) and poly(toluidine blue) (PTBO) on the carboxylated CNT‐modified electrodes was achieved by cyclic voltammetry. The PMG‐CNT interface demonstrates 5.0 mA cm −2 current density for NADH oxidation at 50 mV vs. Ag|AgCl in 20 mM NADH solution. The kinetics of NADH electrocatalysis were analyzed using a quantitative mass‐transport‐corrected model with NADH bulk concentration and applied potential as independent variables. This high‐rate poly(azine)‐CNT interface is potentially applicable to high‐performance bioconversion, bioenergy and biosensors involving NADH‐dependent dehydrogenases.