Premium
Dynamics of Electrocatalytic Oxidation of Ethylene Glycol, Methanol and Formic Acid at MWCNT Platform Electrochemically Modified with Pt/Ru Nanoparticles
Author(s) -
Maxakato Nobanathi W.,
Ozoemena Kenneth I.,
Arendse Christopher J.
Publication year - 2010
Publication title -
electroanalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.574
H-Index - 128
eISSN - 1521-4109
pISSN - 1040-0397
DOI - 10.1002/elan.200900397
Subject(s) - ethylene glycol , formic acid , methanol , electrochemistry , catalysis , dielectric spectroscopy , electrocatalyst , nanoparticle , inorganic chemistry , chemistry , adsorption , materials science , nuclear chemistry , electrode , organic chemistry , nanotechnology
Comparative electrocatalytic behavior of functionalized multiwalled carbon nanotubes (fMWCNTs) electrodecorated with Pt/Ru nanoparticles towards the oxidation of methanol (MeOH), ethylene glycol (EG) and formic acid (FA) has been investigated. The catalytic current density decreased approximately as MeOH≈EG>FA. Result revealed that BPPGE‐fMWCNT‐Pt/Ru tolerates CO poisoning for FA electrooxidation than when used for the oxidation of the EG or MeOH. Electrochemical impedance spectra are dependent on the oxidation potentials, with equivalent circuit models characteristic of adsorption‐controlled charge transfer kinetics. The results provide important insights into the electrochemical response of these small organic molecules useful in fuel cell technology.