Premium
Screen‐Printed Contactless Conductivity Detector for Microchip Capillary Electrophoresis
Author(s) -
Wang Joseph,
Chen Gang,
Chatrathi Madhu Prakash,
Wang Mei,
Rinehart Robert,
Muck Alexander
Publication year - 2008
Publication title -
electroanalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.574
H-Index - 128
eISSN - 1521-4109
pISSN - 1040-0397
DOI - 10.1002/elan.200804341
Subject(s) - fabrication , electrode , materials science , ammonium oxalate , thermal conductivity detector , screen printing , conductivity , optoelectronics , detector , microsystem , nanotechnology , optics , composite material , chemistry , medicine , inorganic chemistry , physics , alternative medicine , pathology
A new method for mass fabrication of silver ink conductivity detector electrodes for poly(methylmethacrylate) (PMMA) microchip electrophoretic systems has been developed based on screen‐printing technology. Printing of silver conductivity electrodes was performed through a patterned stencil on thin PMMA sheets. Following the electrode fabrication, the PMMA sheets are cut into cover sheets, and are aligned and sealed to the channel plate thus establishing a complete microchip separation device. The effects of the electrode width and spacing on the response and resolution have been investigated and the optimized electrode performance was compared to commonly used aluminum electrodes in the determination of ammonium, methyl ammonium, and sodium. The utility of the screen‐printed contactless conductivity detector (SPCCD) electrodes is further demonstrated for the separation and detection of organic acids with excellent reproducibility ( RSD values of 3.7% and 4.1% for oxalate and tartrate, respectively). The thick‐film fabrication of the electrode material demonstrates the ability to mass‐fabricate detection devices with total process of device fabrication requiring less than 4 h (including the fabrication of channel plate, cover sheet with the electrodes, and subsequent bonding). The fabrication method described here is convenient and does not compromise the detector performance, hence offers great promise for producing single use field deployable analytical microsystems.