Premium
Ordered Mesoporous Carbon Paste Electrodes for Electrochemical Sensing and Biosensing
Author(s) -
Zhu Liande,
Tian Chunyuan,
Zhu Dongxia,
Yang Ruilan
Publication year - 2008
Publication title -
electroanalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.574
H-Index - 128
eISSN - 1521-4109
pISSN - 1040-0397
DOI - 10.1002/elan.200704162
Subject(s) - ascorbic acid , biosensor , materials science , electrochemistry , electrode , inorganic chemistry , hydrogen peroxide , detection limit , carbon paste electrode , glucose oxidase , redox , mesoporous material , chemical engineering , catalysis , chemistry , nuclear chemistry , cyclic voltammetry , nanotechnology , organic chemistry , chromatography , food science , engineering
Abstract Surface renewable ordered mesoporous carbon paste electrodes (OMCPE) were prepared by mechanical mixing ordered mesoporous carbon (OMC) and mineral oil. Electrochemical behavior of the composite electrode was evaluated and compared with the conventional graphite paste (GPE) and carbon nanotubes paste (CNTPE) electrodes. The OMCPE provided improved electron transfer kinetics and catalytic capabilities in connection with oxidation and/or reduction of different redox systems, such as ferricyanide and some biological species, e. g. ascorbic acid (AA), uric acid (UA), β‐nicotinamide adenine dinucleotide (NADH), dopamine (DA), epinephrine (EP), acetaminophenol (AP) and hydrogen peroxide. The substantial decrease in the over voltage of the hydrogen peroxide oxidation along with the facile incorporation of glucose oxidase (GOD) into the composite matrix allowed us successfully to fabricate a sensitive and selective glucose biosensor. A linear response up to 15 mM glucose was obtained for the OMCPE modified with 10% GOD (w/w) with a detection limit of 0.072 mM. In addition, we also successfully applied the OMCPE to the anodic stripping voltammetric analysis of heavy metal ions with improved sensitivities in comparison with CNTPE and GPE. The excellent experimental results implicate that the new developed paste electrode holds great promise in the design of electrochemical devices, such as sensors and biosensors.