Premium
Electrostatic Assembly of a Redox Catalysis System for Detection of Glutamate
Author(s) -
Harper Alice C.,
Anderson Mark R.
Publication year - 2006
Publication title -
electroanalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.574
H-Index - 128
eISSN - 1521-4109
pISSN - 1040-0397
DOI - 10.1002/elan.200603704
Subject(s) - ferrocene , chemistry , glucose oxidase , redox , amperometry , electrode , catalysis , cyclic voltammetry , electrolyte , oxidase test , inorganic chemistry , electrochemistry , organic chemistry , enzyme
Interfacial assemblies capable of determining glutamate by redox catalysis are prepared by electrostatic assembly of alternating layers of ferrocene poly(allylamine) polymer and glutamate oxidase on a gold electrode. Deposition of the polymer was confirmed in cyclic voltammetry measurements by the presence of a surface wave corresponding to the oxidation of the ferrocene group. In the presence of glutamate in the adjacent electrolyte solution, the current increases and approaches a pseudosteady state, consistent with redox catalysis. Electrodes modified with glutamate oxidase had a linear response to glutamate up to 0.0045 M with sensitivity of 20 μA/cm 2 and a limit of detection of 31.4 μM glutamate. An apparent Michaelis–Menten constant of 0.40(±0.13) mM for the confined glutamate oxidase was determined for this assembly. When used in flow‐injection experiments, glucose oxidase modified electrodes responded to transient zones of glucose; however, the detection limits of the assemblies to the flowing stream were substantially higher than found for measurements on static solutions.