Premium
Electrochemical Behavior of MCF‐7 Cells on Carbon Nanotube Modified Electrode and Application in Evaluating the Effect of 5‐Fluorouracil
Author(s) -
Chen Kun,
Chen Jinhua,
Guo Manli,
Li Zhenfeng,
Yao Shouzhuo
Publication year - 2006
Publication title -
electroanalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.574
H-Index - 128
eISSN - 1521-4109
pISSN - 1040-0397
DOI - 10.1002/elan.200603503
Subject(s) - electrode , cyclic voltammetry , materials science , graphite , electrochemistry , carbon nanotube , stripping (fiber) , suspension (topology) , chemical engineering , nuclear chemistry , nanotechnology , chemistry , composite material , mathematics , homotopy , pure mathematics , engineering
The electrochemical behavior of human breast cancer cells (MCF‐7) suspension on multiwalled carbon nanotube (MWCNT) modified graphite electrode was studied by using cyclic voltammetry (CV) and potentiometric stripping analysis (PSA). Compared with bare graphite electrode, the MWCNTs‐modified electrode showed electrocatalytic property to the oxidation of electroactive species in the cell suspension. One oxidative peak at about +0.74 V was observed in the cyclic voltammogram. PSA was proved to be more sensitive than CV for investigation of the electrochemical behavior of cells. And it was found that ultrasonication treatment of the cell suspension can significantly enhance the PSA signal. Factors influencing the PSA signal of cells, including deposition time, deposition potential and stripping current, were investigated in detail and the optimum conditions were obtained. The baseline corrected PSA signal was found to be related to the viability of cells and the technique was used for monitoring the growth of MCF‐7 cells. The effect of anticancer drug 5‐fluorouracil (5‐FU) on the growth of MCF‐7 cells was also investigated by PSA.