z-logo
Premium
DNA Hybridization at Magnetic Nanoparticles with Electrochemical Stripping Detection
Author(s) -
Zhu Ningning,
Zhang Aiping,
He Pingang,
Fang Yuzhi
Publication year - 2004
Publication title -
electroanalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.574
H-Index - 128
eISSN - 1521-4109
pISSN - 1040-0397
DOI - 10.1002/elan.200303028
Subject(s) - nanoparticle , magnetic nanoparticles , zinc , chemistry , inorganic chemistry , coprecipitation , oligonucleotide , nuclear chemistry , materials science , nanotechnology , dna , organic chemistry , biochemistry
A simple and practical method for electrochemical DNA hybridization assay has been developed to take advantage of magnetic nanoparticles for ssDNA immobilization and zinc sulfide nanoparticle as oligonucleotide label. Magnetic nanoparticles were prepared by coprecipitation of Fe 2+ and Fe 3+ with NH 4 OH, and then amino silane was coated onto the surface of magnetite nanoparticles. The magnetic nanoparticles have the advantages of easy preparation, easy surface modification and low cost. The target ssDNA with the phosphate group at the 5′ end was then covalently immobilized to the amino group of magnetite nanoparticles by forming a phosphoramidate bond in the presence of 1‐ethyl‐3‐(3‐dimeth‐ylaminopropyl)carbodiimide (EDAC). The zinc sulfide (ZnS) nanoparticle‐labeled oligonucleotides probe was used to identify the target ssDNA immobilized on the magnetic nanoparticles based on a specific hybridization reaction. The hybridization events were assessed by the dissolution of the zinc sulfide nanoparticles anchored on the hybrids and the indirect determination of the dissolved zinc ions by anodic stripping voltammetry (ASV) at a mercury film glassy carbon electrode (GCE). The proposed method couples the high sensitivity of anodic stripping analysis for zinc ions with effective magnetic separation for eliminating nonspecific adsorption effects and offers great promise for DNA hybridization analysis.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here