z-logo
Premium
Successive Pd‐Catalyzed Decarboxylative Cross‐Couplings for the Modular Synthesis of Non‐Symmetric Di‐Aryl‐Substituted Thiophenes
Author(s) -
Messina Cynthia,
Douglas Liam Z.,
Liu Jiang Tian,
Forgione Pat
Publication year - 2020
Publication title -
european journal of organic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.825
H-Index - 155
eISSN - 1099-0690
pISSN - 1434-193X
DOI - 10.1002/ejoc.202000780
Subject(s) - chemistry , aryl , combinatorial chemistry , thiophene , catalysis , palladium , organic synthesis , molecule , coupling reaction , computational chemistry , organic chemistry , alkyl
Oligothiophenes are important organic molecules in a number of burgeoning industries as semi‐conducting materials due to their extensive π‐conjugation and charge transport properties. Typically, non‐symmetric, di‐aryl‐substituted thiophenes are prepared by the successive formation of Grignards, organotin, and/or boronic acid intermediates that can be subsequently employed in cross‐coupling reactions. While reliable, these approaches present synthetic difficulties due to the reactivity of organo‐metallic/pseudo‐metallic species, and produce considerable amounts of waste due to necessary pre‐functionalization. We have developed a decarboxylative cross‐coupling route as an effective strategy for the modular and less wasteful synthesis of a wide range of non‐symmetric, di‐arylthiophenes. This method uses a thiophene ester building block for successive decarboxylative palladium‐catalyzed couplings that allows for the efficient synthesis and evaluation of the opto‐electronic properties of a library of candidate semi‐conductors with functional groups that could be challenging to access using previous routes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here