z-logo
Premium
New Push‐Pull Chromophores Featuring TCAQ (11,11,12,12‐Tetracyano‐ 9,10‐anthraquinodimethane) and Other Dicyanovinyl Acceptors
Author(s) -
Bureš Filip,
Schweizer W. Bernd,
Boudon Corinne,
Gisselbrecht JeanPaul,
Gross Maurice,
Diederich François
Publication year - 2008
Publication title -
european journal of organic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.825
H-Index - 155
eISSN - 1099-0690
pISSN - 1434-193X
DOI - 10.1002/ejoc.200700970
Subject(s) - chemistry , malononitrile , chromophore , knoevenagel condensation , cyclic voltammetry , intramolecular force , photochemistry , reagent , electrochemistry , organic chemistry , electrode , catalysis
Stable, highly colored push‐pull chromophores with NMe 2 donor and C=C(CN) 2 acceptor moieties, featuring intense intramolecular charge‐transfer (CT) bands in the UV/Vis spectra, are reported. In an attempt to prepare the quinoid push‐pull systems 2 , chromophores 10 and 11 , with a central cyclohexene spacer, were obtained and characterized by X‐ray analysis. A series of donor‐substituted TCAQ (11,11,12,12‐tetracyano‐9,10‐anthraquinodimethane) derivatives were synthesized, using the Knoevenagel condensation between appropriately functionalized anthraquinones and malononitrile, mediated by the Lehnert reagent (TiCl 4 /pyridine), as the key step. HCl addition to triple bonds was observed when this transformation was applied to alkynylated anthraquinones. Electrochemical studies by cyclic voltammetry (CV) and rotating‐disk voltammetry (RDV) showed that introduction of donor substituents into the TCAQ core of 25 , 26 , and 31 shifts the first reduction potential to more negative values, while chromophores bearing guanidine moieties ( 27 , 28 ) displayed a specific and complex redox behavior. Both electrochemical and UV/Vis data provide good evidence that D–A conjugation is more efficient through olefinic (in 10 ) than through acetylenic (in 37 ) spacers. (© Wiley‐VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here