Premium
The First Chemical Synthesis of UDP[6‐ 3 H]‐α‐ D ‐galactofuranose
Author(s) -
Mariño Karina,
Marino Carla,
Lima Carlos,
Baldoni Luciana,
de Lederkremer Rosa M.
Publication year - 2005
Publication title -
european journal of organic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.825
H-Index - 155
eISSN - 1099-0690
pISSN - 1434-193X
DOI - 10.1002/ejoc.200500056
Subject(s) - mutase , chemistry , enzyme , stereochemistry , molecule , biochemistry , nucleotide , organic chemistry , gene
Galactofuranose metabolism is a good target for the development of novel chemotherapeutic agents for the treatment of some microbial infections. This is a valid objective because galactofuranose is absent in mammals. Two enzymes are involved in the biosynthesis of molecules containing galactofuranose: a mutase, which catalyzes the interconversion of UDP‐Gal p and UDP‐Gal f , and D ‐galactofuranosyltransferases. The mechanism of action of the mutase and its inhibition is currently being investigated, whereas studies on the galactofuranosyltransferases have been hampered by the lack of a labeled galactofuranose nucleotide. In the present work we describe the chemical synthesis of UDP‐α‐ D ‐[6‐ 3 H]Gal f and we prove its effectiveness for incorporation of radioactive galactofuranose into a natural acceptor. This is the first report on the chemical synthesis of a labeled donor of galactofuranose with the potential for studying the galactofuranosyltransferases independently from the UDP‐Gal p mutase. (© Wiley‐VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom