z-logo
Premium
Characterization of the effects of β‐carotene on the thermal oxidation of triacylglycerols using HPLC‐ESI‐MS
Author(s) -
Zeb Alam,
Murkovic Michael
Publication year - 2010
Publication title -
european journal of lipid science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.614
H-Index - 94
eISSN - 1438-9312
pISSN - 1438-7697
DOI - 10.1002/ejlt.201000392
Subject(s) - chemistry , carotene , oleic acid , linoleic acid , methanol , high performance liquid chromatography , chromatography , degradation (telecommunications) , thermal stability , pigment , fatty acid , organic chemistry , biochemistry , telecommunications , computer science
Abstract RP HPLC method coupled to ESI‐MS was used for the analysis and characterization of the oxidation of model triacylglycerols (TAGs) in presence of β‐carotene. β‐Carotene was added to the TAGs and oxidized in the Rancimat at 110°C. The samples were separated isocratically using a mixture of isopropanol with methanol and a Phenomenex C18 column. β‐Carotene degradation was measured using high performance TLC. We found that β‐carotene plays an important role during the thermal degradation of high oleic acid model TAGs. Half of the β‐carotene was degraded before 3 h of thermal treatment. β‐Carotene significantly increases the peroxide value of the TAGs after the third hour, suggesting a pro‐oxidant action. However, different TAGs show different activity toward thermal treatment and β‐carotene. The LLL was found to be less stable, OLL and OLO were stable till 10 and 12 h respectively, while POO, OOO, and OSO were the stable TAGs till 14 h. In TAGs, replacing linoleic acid by oleic acid, the stability of the corresponding TAG was found to increase by 2 h. A new class of oxidized TAGs was reported for the first time, together with previously reported species. The proposed mechanism of formation and identification of the newly identified species have been explained. Among the oxidized species of TAGs, mono‐hydroperoxides, bis‐hydroperoxides, epoxy‐epidioxides, and epoxides were the major compounds identified.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here