Premium
Transesterification of karanja (Pongamia pinnata) oil by solid basic catalysts
Author(s) -
Meher Lekha Charan,
Kulkarni Mangesh G.,
Dalai Ajay K.,
Naik Satya Narayan
Publication year - 2006
Publication title -
european journal of lipid science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.614
H-Index - 94
eISSN - 1438-9312
pISSN - 1438-7697
DOI - 10.1002/ejlt.200500307
Subject(s) - transesterification , catalysis , methanol , chemistry , calcium oxide , pongamia , nuclear chemistry , alkali metal , organic chemistry , biodiesel
Abstract The transesterification of karanja oil with methanol was carried out using solid basic catalysts. Alkali metal‐impregnated calcium oxide catalysts, due to their strong basicity, catalyze the transesterification of triacylglycerols. The alkali metal (Li, Na, K)‐doped calcium oxide catalysts were prepared and used for the transesterification of karanja oil containing 0.48–5.75% of free fatty acids (FFA). The reaction conditions, such as catalyst concentration, reaction temperature and molar ratio of methanol/oil, were optimized with the solid basic Li/CaO catalyst. This catalyst, at a concentration of 2 wt‐%, resulted in 94.9 wt‐% of methyl esters in 8 h at a reaction temperature of 65 °C and a 12 : 1 molar ratio of methanol to oil, during methanolysis of karanja oil having 1.45% FFA. The yield of methyl esters decreased from 94.9 to 90.3 wt‐% when the FFA content of karanja oil was increased from 0.48 to 5.75%. The performance of this catalyst was not significantly affected in the presence of a high FFA content up to 5.75%. The catalytic activities of Na/CaO and K/CaO were also studied at the optimized reaction conditions. In these two cases, the reaction initially proceeds slowly, however, leading to similar yields as in the case of Li/CaO after 8 h of reaction time. The purified karanja methyl esters have an acid value of 0.36 mg KOH/g and an ester content of 98.6 wt‐%, which satisfy the American as well as the European specifications for biodiesel in terms of acid value and ester content.