Premium
Hybrid EUV Resists with Mixed Organic Shells: A Simple Preparation Method
Author(s) -
Wu Lianjia,
Liu Jeremy,
Vockenhuber Michaela,
Ekinci Yasin,
Castellanos Sonia
Publication year - 2019
Publication title -
european journal of inorganic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.667
H-Index - 136
eISSN - 1099-0682
pISSN - 1434-1948
DOI - 10.1002/ejic.201900745
Subject(s) - extreme ultraviolet lithography , resist , chemistry , extreme ultraviolet , lithography , nanotechnology , chemical engineering , organic chemistry , materials science , optoelectronics , optics , engineering , layer (electronics) , laser , physics
Metal‐containing molecular hybrid compounds, such as metal oxoclusters (MOCs), are promising materials for extreme ultraviolet (EUV) lithography. The solubility, processability, and reactivity towards EUV photons in these compounds are mostly determined by the composition of their organic shells. Therefore, gaining molecular control on the composition of the shell is crucial to tune their lithographic performance of sensitivity, resolution, and line‐edge roughness. In this work, a new method to prepare MOCs that feature two types of carboxylate ligands is presented. In this method, amine‐functionalized resins are used for the purification step. By using this protocol, Ti‐ and Zr‐based MOCs with mixed‐ligands organic shells were synthesized. The new compounds showed clear differences in the processability and sensitivity as EUV resists compared to their analogues featuring only one type of ligand. The results validate this new synthetic approach for the preparation of custom‐made EUV resists towards better lithographic performance.