Premium
Hydride Abstraction and Deprotonation – an Efficient Route to Low Coordinate Phosphorus and Arsenic Species
Author(s) -
Taylor Laurence J.,
Bühl Michael,
Wawrzyniak Piotr,
Chalmers Brian A.,
Woollins J. Derek,
Slawin Alexandra M. Z.,
Fuller Amy L.,
Kilian Petr
Publication year - 2016
Publication title -
european journal of inorganic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.667
H-Index - 136
eISSN - 1099-0682
pISSN - 1434-1948
DOI - 10.1002/ejic.201500948
Subject(s) - chemistry , phosphorane , deprotonation , arsine , hydride , phosphine , medicinal chemistry , pyridinium , acenaphthene , stereochemistry , arsenic , organic chemistry , metal , ion , pyrene , catalysis
Abstract Treatment of Acenap(P i Pr 2 )(EH 2 ) (Acenap = acenaphthene‐5,6‐diyl; 1a , E = As; 1b , E = P) with Ph 3 C · BF 4 resulted in hydride abstraction to give [Acenap(P i Pr 2 )(EH)][BF 4 ] ( 2a , E = As; 2b , E = P). These represent the first structurally characterised phosphino/arsino‐phosphonium salts with secondary arsine/phosphine groups, as well as the first example of a Lewis base stabilised primary arsenium cation. Compounds 2a and 2b were deprotonated with NaH to afford low coordinate species Acenap(P i Pr 2 )(E) ( 3a , E = As; 3b , E = P). This provides an alternative and practical synthetic pathway to the phosphanylidene‐σ 4 ‐phosphorane 3b and provides mechanistic insight into the formation of arsanylidene‐σ 4 ‐phosphorane 3a , indirectly supporting the hypothesis that the previously reported dehydrogenation of 1a occurs via an ionic mechanism.