z-logo
Premium
Quantum‐Dot‐Sensitized Nitrogen‐Doped ZnO for Efficient Photoelectrochemical Water Splitting
Author(s) -
Chen Chih Kai,
Shen YenPing,
Chen Hao Ming,
Chen ChihJung,
Chan TingShan,
Lee JyhFu,
Liu RuShi
Publication year - 2014
Publication title -
european journal of inorganic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.667
H-Index - 136
eISSN - 1099-0682
pISSN - 1434-1948
DOI - 10.1002/ejic.201301310
Subject(s) - water splitting , chemistry , x ray photoelectron spectroscopy , quantum dot , hydrogen , photocurrent , absorption edge , absorption spectroscopy , hydrogen production , spectroscopy , nanotechnology , photocatalysis , chemical engineering , optoelectronics , band gap , materials science , catalysis , optics , biochemistry , physics , organic chemistry , quantum mechanics , engineering
Fossil fuels have been used for several decades and have resulted in increased greenhouse gases and pollutants. Currently, clean and renewable energy is in demand. Hydrogen appears to be a good candidate for clean energy because the only product of its reaction with oxygen is water. Water splitting by solar energy is a potential method for the generation of hydrogen in future applications. This study investigates the use of a CdTe quantum‐dot‐sensitized ZnO:N nanowire arrays for water splitting. The proposed method resulted in considerably enhanced photocurrent and stability. The electronic structures of the ZnO:N materials are also determined by O K ‐edge X‐ray absorption spectroscopy. The incorporation of nitrogen into the ZnO nanostructure is determined by X‐ray photoelectron spectroscopy and Zn K ‐edge X‐ray absorption spectroscopy; the nitrogen incorporation changes the electronic state and, thus, increases the water‐splitting performance.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here