z-logo
open-access-imgOpen Access
New Carbon Nitride C 3 N 3 Additive for Improving Cationic Defects of Perovskite Solar Cells
Author(s) -
Li Zuhong,
Feng Jiaxin,
Cao Jinguo,
Jin Jiaren,
Zhou Yijun,
Cao Duoling,
Liang Zihui,
Zhu Bicheng,
Li Ming,
Zhao Li,
Wang Shimin
Publication year - 2023
Publication title -
energy and environmental materials
Language(s) - English
Resource type - Journals
ISSN - 2575-0356
DOI - 10.1002/eem2.12283
Subject(s) - energy conversion efficiency , materials science , perovskite (structure) , grain boundary , chemical engineering , optoelectronics , composite material , microstructure , engineering
Due to the loss of organic amine cations and lead ions in the structure of the iodine–lead methylamine perovskite solar cell, there are a large number of defects within the film and the recombination loss caused by grain boundaries, which seriously hinder the further improvement of power conversion efficiency and stability. Herein, a novel carbon nitride C 3 N 3 incorporated into the perovskite precursor solution is a multifunctional strategy, which not only increases the light absorption strength, grain size, and hydrophobicity of the perovskite film, but also effectively passivates the bulk and interfacial defects of perovskite and verified by the first‐principles density functional theory calculations. As a result, the efficiency and stability of perovskite solar cells are improved. The device with 0.075 mg mL −1 C 3 N 3 additive delivers a champion power conversion efficiency of 19.91% with suppressed hysteresis, which is significantly higher than the 18.16% of the control device. In addition, the open‐circuit voltage of the modified device with the maximum addition as high as 1.137 V is 90.96% of the Shockley–Queisser limit (1.25 V). Moreover, the power conversion efficiency of the modified device without encapsulation can maintain nearly 90% of its initial value after being stored at 25 °C and 60% relative humidity for 500 h. This work provides a new idea for developing additives to improve the power conversion efficiency and stability of perovskite solar cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here