Premium
Behavioral characteristics of nanosecond pulsed discharge in coaxial electrodes
Author(s) -
Ryu Terumasa,
Wang Douyan,
Namihira Takao
Publication year - 2020
Publication title -
electrical engineering in japan
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.136
H-Index - 28
eISSN - 1520-6416
pISSN - 0424-7760
DOI - 10.1002/eej.23254
Subject(s) - nanosecond , plasma , coaxial , materials science , streamer discharge , electrode , pulsed power , pulse duration , ozone , atomic physics , optics , voltage , electrical engineering , physics , laser , engineering , quantum mechanics , meteorology
The environmental improvements by pulsed discharge plasma, a type of nonthermal plasma, have received much attention all over the world. The observation of discharge plasmas is beneficial for better understanding of the plasma physics of this growing field. Recently, nanosecond (ns) pulsed discharge with a short pulse duration of 5 ns achieved the higher energy efficiency on ozone generation and NO removal. However, the underlying mechanisms of these high efficiencies remain unclear. In the present study, the effects of electrode geometry on propagation process of ns pulsed discharge in coaxial electrodes were investigated using an ICCD camera. As the results, increasing wire diameters from 0.2 to 2.0 mm lead the different streamer discharge parameters; propagation velocity of streamer heads from 4.8 mm/ns to 12.5 mm/ns, peak of discharge current from 243 to 328 A, respectively. Therefore, it is concluded that the wire diameter is one of the paramount parameters to control the characteristics of the ns pulsed streamer discharge.