z-logo
Premium
Low‐Voltage‐Ride‐Through Performance of an HVDC Transmission System Using Two Modular Multilevel Double‐Star Chopper‐Cells Converters
Author(s) -
OGUMA KOTA,
AKAGI HIROFUMI
Publication year - 2017
Publication title -
electrical engineering in japan
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.136
H-Index - 28
eISSN - 1520-6416
pISSN - 0424-7760
DOI - 10.1002/eej.22976
Subject(s) - converters , chopper , modular design , electrical engineering , voltage , star (game theory) , transmission system , braking chopper , transmission (telecommunications) , engineering , electronic engineering , computer science , physics , operating system , astrophysics
SUMMARY This paper presents an intensive discussion on a long‐distance high‐voltage direct‐current (HVDC) transmission system that combines two modular multilevel cascade converters based on double‐star chopper cells (MMCC‐DSCC) with DC power cables. Hereinafter, a single MMCC‐DSCC is referred to as a DSCC converter or just as a DSCC for the sake of simplicity. The HVDC transmission system is required to provide low‐voltage‐ride‐through (LVRT) capability to enhance transmission system availability. This paper proposes a new LVRT method without any direct information exchange between the two DSCC converters. The validity of the method is verified, using simulated waveforms from the software package of “PSCAD/EMTDC” and experimental waveforms from a three‐phase 200‐V, 400‐Vdc, 10‐kW, 50‐Hz downscaled HVDC system with a set of 300‐meter‐long DC power cables.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom