Premium
Highly Efficient dc–dc Transformer Based on Multicell Converter Topology for Next Generation dc Distribution System
Author(s) -
HAYASHI YUSUKE,
TAKAI DAIKI,
MATSUMOTO AKIRA,
ISE TOSHIFUMI
Publication year - 2017
Publication title -
electrical engineering in japan
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.136
H-Index - 28
eISSN - 1520-6416
pISSN - 0424-7760
DOI - 10.1002/eej.22938
Subject(s) - converters , transformer , topology (electrical circuits) , forward converter , network topology , flyback converter , voltage , electronic engineering , electrical engineering , series and parallel circuits , computer science , engineering , boost converter , operating system
SUMMARY A multicell dc–dc transformer (DCX) with an efficiency of 98.0% is developed for a next generation dc distribution system. Input series output parallel (ISOP) and input parallel output series (IPOS) connection topologies of highly efficient dc–dc cell converters have been applied to realize DCXs that have arbitrary I/O voltages and a high transfer factor. The behavior of a DCX based on multicell topology using nonregulated dc–dc converters is analyzed, and the voltage stress in each cell converter is discussed quantitatively considering the variation in converter circuit parameters. Further, the availability of the applied topology and the validity of the analysis are confirmed by fabricating a prototype of a 384 V to 12 V 2400 W DCX. The multicell topology contributes to realizing a low‐carbon society pushing the promotion of highly efficient, space‐saving, and low cost dc power supplies with standardized, highly efficient cell converter modules.