Premium
A Proposal of Identifying Optimized Layout of Devices in Electromagnetic Resonant Coupling Type Wireless Power Transfer System
Author(s) -
DOI TATSUYA
Publication year - 2017
Publication title -
electrical engineering in japan
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.136
H-Index - 28
eISSN - 1520-6416
pISSN - 0424-7760
DOI - 10.1002/eej.22890
Subject(s) - wireless power transfer , resonator , coupling (piping) , electronic engineering , coupling coefficient of resonators , power (physics) , wireless , inductive coupling , equivalent circuit , maximum power transfer theorem , engineering , computer science , topology (electrical circuits) , electrical engineering , voltage , physics , telecommunications , mechanical engineering , quantum mechanics
SUMMARY Recently, a system for wireless power transfer (WPT) using electromagnetic resonant coupling has been evaluated and developed for practical applications such as a wireless charge system for automobiles or electronic devices. However, the efficiency of an electromagnetic resonant coupling type WPT system with LC resonators is greatly affected by the layout of the LC resonators allocated in the system. This means that there is an optimum layout for the LC resonators for transferring wireless power at higher efficiency. This paper presents a new method for identifying the optimum layout for the LC resonators in a WPT system. One of the key ideas is that the problem of finding the optimum layout is replaced by the problem of calculating the equivalent current sources in the LC resonators. The amplitude of the equivalent current sources can be calculated to solve ill‐posed system equations by using inverse analysis. First, the proposed method is described. The system equations to be solved are formulated by means of equivalent circuit techniques. Second, the proposed method is applied to a simplified model to identify the optimum layout for the LC resonators in a WPT system. Then, the results found using the proposed method are verified by comparing the ratio of receiving power with the identified layout and without the LC resonator. Finally, in order to verify the validity of the proposed method, the calculated results are compared with the experiment results using the same model.