z-logo
Premium
Robust design of vibration suppression control system for crane using sway angle observer considering friction disturbance
Author(s) -
Sano Hiroki,
Sato Kentaro,
Ohishi Kiyoshi,
Miyazaki Toshimasa
Publication year - 2013
Publication title -
electrical engineering in japan
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.136
H-Index - 28
eISSN - 1520-6416
pISSN - 0424-7760
DOI - 10.1002/eej.22412
Subject(s) - control theory (sociology) , vibration , observer (physics) , control system , state observer , disturbance (geology) , nonlinear system , engineering , computer science , container (type theory) , control engineering , control (management) , artificial intelligence , acoustics , mechanical engineering , paleontology , physics , quantum mechanics , electrical engineering , biology
It is desirable for a container crane to operate smoothly and quickly. For this purpose, the control system of a container crane should be capable of antisway control for suppressing vibrations. A vision sensor system is often used to detect the sway angle. However, since a control system with a vision sensor has a delay time when determining the angle, it sometimes leads to deterioration of control performance owing to the delay time. In order to overcome this problem, this paper proposes a new antisway crane control system based on a dual‐state observer with sensor‐delay correction. However, because of nonlinear friction in the crane, the estimation accuracy achieved by using the observer is poor. To overcome this problem, this paper proposes a disturbance observer considering friction disturbance. The control performance and eectiveness of the proposed robust control system based on the estimated information are shown to be satisfactory by experimental results. © 2013 Wiley Periodicals, Inc. Electr Eng Jpn, 184(3): 36–46, 2013; Published online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/eej.22412

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom