z-logo
Premium
Study of a DC voltage equalizing circuit and a zero‐sequence voltage control method for a diode‐clamped linear amplifier
Author(s) -
Yamashita Naoya,
Fujita Hideaki
Publication year - 2012
Publication title -
electrical engineering in japan
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.136
H-Index - 28
eISSN - 1520-6416
pISSN - 0424-7760
DOI - 10.1002/eej.21131
Subject(s) - voltage , diode , electrical engineering , amplifier , zero (linguistics) , materials science , sequence (biology) , physics , control theory (sociology) , electronic engineering , optoelectronics , engineering , computer science , control (management) , chemistry , cmos , philosophy , linguistics , biochemistry , artificial intelligence
2,3 This paper proposes a DC voltage equalizing circuit for a diode‐clamped linear amplifier (DCLA). The DCLA consists of series‐connected complementary MOSFETs and diode clamping circuits, with an experimental efficiency as high as 90% without switching operation. The DCLA requires a DC voltage equalizing circuit to divide the DC voltage into several levels. The proposed DC voltage equalizing circuit allows the use of a diode rectifier with a smoothing capacitor as a power supply for the DCLA. Zero‐sequence voltage control is proposed to improve the efficiency of the DCLA. As a result, a prototype 12‐series DCLA demonstrates an experimental efficiency as high as 94.7%. © 2012 Wiley Periodicals, Inc. Electr Eng Jpn, 179(2): 55–63, 2012; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.21131

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom