Premium
Proposal and evaluation of a gas engine and gas turbine hybrid cogeneration system in which cascaded heat is highly utilized
Author(s) -
Pak Pyong Sik
Publication year - 2009
Publication title -
electrical engineering in japan
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.136
H-Index - 28
eISSN - 1520-6416
pISSN - 0424-7760
DOI - 10.1002/eej.20708
Subject(s) - cogeneration , gas engine , gas turbines , exhaust gas , heat engine , power (physics) , turbine , process engineering , gas consumption , automotive engineering , mechanical engineering , thermodynamics , electricity generation , engineering , environmental science , materials science , waste management , physics
Abstract A high‐efficiency cogeneration system (CGS) is proposed for utilizing high‐temperature exhaust gas (HTEG) from a gas engine (GE). In the proposed system, for making use of heat energy of HTEG, H 2 O turbine (HTb) is incorporated and steam produced by utilizing HTEG is used as working fluid of HTb. HTb exhaust gas is also utilized for increasing power output and for satisfying heat demand in the proposed system. Both of the thermodynamic characteristics of the proposed system and a gas engine CGS (GE‐CGS) constructed by using the original GE are estimated. Energy saving characteristics and CO 2 reduction effects of the proposed CGS and the GE‐CGS are also investigated. It was estimated that the net generated power of the proposed CGS has been increased 25.5% and net power generation efficiency 6.7%, compared with the original GE‐CGS. It was also shown that the proposed CGS could save 27.0% of energy consumption and reduce 1137 t‐CO 2 /y, 1.41 times larger than those of GE‐CGS, when a case study was set and investigated. Improvements of performance by increasing turbine inlet temperature were also investigated. © 2008 Wiley Periodicals, Inc. Electr Eng Jpn, 166(3): 37– 45, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20708