Premium
A bidirectional isolated DC/DC converter as a core circuit for 3.3‐kV/6.6‐kV power conversion systems in the next generation
Author(s) -
Inoue Shigenori,
Akagi Hirofumi
Publication year - 2008
Publication title -
electrical engineering in japan
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.136
H-Index - 28
eISSN - 1520-6416
pISSN - 0424-7760
DOI - 10.1002/eej.20505
Subject(s) - galvanic isolation , electrical engineering , converters , transformer , forward converter , flyback converter , materials science , electronic engineering , boost converter , engineering , voltage
This paper describes a bidirectional isolated DC/DC converter considered as a core circuit for next‐generation 3.3‐kV/6.6‐kV high‐power‐density power conversion systems. The DC/DC converter is intended to use power switching devices based on SiC and/or GaN, which will be available on the market in the near future. A 350‐V, 10‐kW, and 20‐kHz DC/DC converter is designed, constructed, and tested in this paper. It consists of two single‐phase full‐bridge converters with the latest trench‐gate Si‐IGBTs and a 20‐kHz transformer with a nano‐crystalline soft‐magnetic material core and litz wires. The transformer plays an essential role in achieving galvanic isolation between the two full‐bridge converters. The overall efficiency from the DC‐input to DC‐output terminals is accurately measured to be as high as 97%, excluding gate drive circuit and control circuit losses from the whole loss. Moreover, loss analysis is carried out to estimate effectiveness in using SiC‐based power switching devices. The loss analysis clarifies that the use of SiC‐based power devices may bring a significant reduction in conducting and switching losses to the DC/DC converter. As a result, the overall efficiency may reach 99% or higher. © 2008 Wiley Periodicals, Inc. Electr Eng Jpn, 163(2): 75–83, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20505