z-logo
Premium
Open‐cycle OTEC systems with freshwater product: Effects of noncondensable gases on performance of condenser
Author(s) -
Amano Masatsugu,
Tanaka Tadayosi
Publication year - 2005
Publication title -
electrical engineering in japan
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.136
H-Index - 28
eISSN - 1520-6416
pISSN - 0424-7760
DOI - 10.1002/eej.20179
Subject(s) - ocean thermal energy conversion , condenser (optics) , condensation , thermodynamics , evaporation , seawater , heat transfer , working fluid , materials science , environmental science , physics , geology , oceanography , light source , optics
An open‐cycle ocean thermal energy conversion (OC‐OTEC) system is one of the energy conversion methods used to generate electricity from ocean thermal energy. For the OC‐OTEC system, steam evaporated from the surface seawater due to flash evaporation drives the turbine. At that time, dissolved gas such as air is introduced into the low‐pressure system (OC‐OTEC system) as the noncondensable gas, which degrades the performance of condensation heat transfer. In this paper, a small‐scale OC‐OTEC experimental unit experimentally investigates the effect of noncondensable gas on the heat transfer performance in a condenser. The experimental results are discussed in comparison with theoretical estimation by the Sparrow–in method. It is shown that the condensation is occupied by heat and mass transfer near a condensation surface and that the condensation efficiency is affected by exhaust quantity of noncondensable gas at a relatively high concentration ratio of condensable gas. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 154(1): 29–35, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20179

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here