z-logo
Premium
Performance of dimethyl ether fuel cells using a Pt‐Ru catalyst
Author(s) -
Haraguchi Tadao,
Tsutsumi Yasuyuki,
Takagi Hiroyuki,
Tamegai Naoaki,
Yamashita Susumu
Publication year - 2005
Publication title -
electrical engineering in japan
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.136
H-Index - 28
eISSN - 1520-6416
pISSN - 0424-7760
DOI - 10.1002/eej.20072
Subject(s) - catalysis , dimethyl ether , methanol , anode , materials science , platinum , fuel cells , chemical engineering , chemistry , organic chemistry , engineering , electrode
Phenomena are presented whereby the performance of a dimethyl ether fuel cell (DDFC) at 80°C is much lower when a Pt‐Ru catalyst is used on the anode than when a Pt catalyst is used, in contrast to the higher performance achieved using a Pt‐Ru catalyst over a Pt catalyst in direct methanol fuel cells (DMFC). The DDFC performance achieved using a Pt‐Ru catalyst increases with temperature and exceeds that using a Pt catalyst at temperatures over 100 °C. After high‐temperature operation, the performance of DDFC using a Pt‐Ru catalyst at 80 °C is improved. By supplying sufficient steam before operation, the performance of DDFC using a Pt‐Ru catalyst at 80 °C is also found to improve. Before and during operation, more steam is needed for stable operation of the DDFC using a Pt‐Ru catalyst at 80 °C than using a Pt catalyst. © 2004 Wiley Periodicals, Inc. Electr Eng Jpn, 150(3): 19–25, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20072

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom